Sains Malaysiana 54(4)(2025): 975-991

http://doi.org/10.17576/jsm-2025-5404-02

 

Geochemical and Mineralogical Characteristics of Andesitic Derived Laterite from the Serian Volcanic, West Sarawak, Malaysia: Potential for Ion-Adsorption-Type Ree Deposit

(Ciri Geokimia dan Mineralogi Laterit Asalan Andesitik daripada Volkano Serian, Sarawak Barat, Malaysia: Potensi untuk Deposit Ree Jenis Ion Penjerapan)

 

LEDYHERNANDO TANIOU1,2,*, MOHD BASRIL ISWADI BASORI2 & KENZO SANEMATSU3

 

1Department of Mineral and Geoscience Malaysia (Sarawak), Jalan Wan Abdul Rahman, Kenyalang Park, 93712 Kuching, Sarawak, Malaysia

2Geology Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3The National Institute of Advanced Industrial Science and Technology (AIST), Geological Survey of Japan, Tsukuba, Japan

 

Diterima: 20 Jun 2024/ Diserahkan: 23 Disember 2024

 

Abstract

The rare earth elements (REEs) found in the Earth’s crust are highly sophisticated minerals that have a significant application in various high-tech industries such as green technology and defense. Due to the limited study of REE derived from volcanic rocks, the main objectives of this research are focusing to determine the geochemical and mineralogical, as well to examine the potential resources of ion-adsorption type deposits in volcanic rock and their derived laterite profile from the Serian Volcanic, West Sarawak, Malaysia. Two lateritic profiles were examined, and the parent volcanic rock is classified as basaltic trachyandesite in composition with moderate REE content of 209 ppm. In both profiles the abundance of the REE is subjected to the deep weathering through CIA (99-100%) that promote the enrichment of REE to the laterite profile up to 1715.98 ppm. The dominance of kaolinite mineral as an absorbent material, coupled with the absence of RE mineral in the laterite samples, indicates the potential for ion-adsorption clay deposit with high (>75%) extracted REY content, as determined by ion-exchangeable analysis. The chondrite-normalized REE pattern for both profiles were almost flat for parent rock, whereas LREE and HREE were equally abundant in the laterite profile. However, the TREE significantly decrease toward the upper part of each profile. This study also demonstrates that laterites with a high TREE and low Ce anomalies have the highest ion-exchangeable (REY) fraction relative to the parent rock content, suggesting that ion-adsorption deposit in this region have the potential to recover REY in terms of resources quantity.

Keywords: Andesite; ion-adsorption clay; Malaysia; rare earth element

 

Abstrak

Unsur nadir bumi (REE) yang terdapat di kerak bumi adalah merupakan mineral termaju yang signifikan kepada pembangunan industri berteknologi tinggi meliputi teknologi hijau dan pertahanan. Disebabkan kurangnya kajian REE yang berasalan daripada batuan volkanik, objektif utama kajian ini memberi fokus untuk mengkaji cirian mineralogi dan geokimia serta mengenal pasti potensi jenis longgokan lempung jerapan ion dalam batuan volkano dan profil luluhawa laterit daripada Volkano Serian, Wilayah Barat Sarawak, Malaysia. Dua profil laterit telah dikaji dan pengelasan batuan induk volkano menunjukkan batuan berada dalam kumpulan trakit-andesit-basalt dengan kepekatan kandungan REE 209 bpsj. Kandungan REE yang tinggi pada kedua-dua profil luluhawa adalah berkait-rapat dengan kadar luluhawa yang tinggi melalui peratusan CIA (99-100%) yang menyumbang kepada pengayaan REE mencecah 1715.98 bpsj. Kewujudan mineral lempung yang dominan dan bertindak sebagai mineral penjerap dengan tiadanya kehadiran mineral RE yang dikesan dalam sampel laterit mencadangkan kawasan kajian mempunyai potensi kewujudan longgokan lempung jerapan ion dengan kadar pengekstrakan REY yang tinggi (>75%) melalui analisis pertukaran-ion. Corak penormalan-kondrit unsur nadir bumi pada kedua-dua profil juga menunjukkan bentuk yang hampir rata untuk batuan dan keberadaan LREE dan HREE hampir sama banyak pada profil laterit yang dikaji. Walau bagaimanapun, kandungan TREE dilihat berkurangan ke arah bahagian atas untuk kedua-dua profil. Kajian yang dijalankan juga menunjukkan laterit yang mengandungi kandungan TREE yang tinggi dengan nilai anomali Ce yang rendah mempunyai kadar pertukaran ion REY yang tinggi berbanding kandungan yang terdapat dalam batuan induk, mencadangkan longgokan lempung jerapan ion di wilayah ini berpotensi mempunyai sumber REY dari segi kuantiti.

Kata kunci: Andesit; lempung jerapan ion; Malaysia; unsur nadir bumi

 

RUJUKAN

Abedini, A., Khosravi, M. & Dill, H.G. 2020. Rare earth element geochemical characteristics of the late Permian Badamlu karst bauxite deposit, NW Iran. Journal of African Earth Sciences 172: 103974.

Adi Mabo. 1994. General geology of Lobang Batu - Mongkos area with emphasis on carbonate sedimentology. Thesis. University of Malaya (Unpublished).

Aleva, G.J.J. & Creutzberg, D. 1994. Laterites. Concepts, Geology, Morphology and Chemistry. Wageningen: International Soil Reference and Information Centre (ISRIC).

Atwood, D.A. 2012. The Rare Earth Elements Fundamentals and Applications. New York: John Wiley & Sons.

Bao, Z. & Zhao, Z. 2008. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geology Reviews 33(3-4): 519-535.

Bárdossy, G. & Aleva, G.J.J. 1990. Lateritic Bauxites. Elsevier.

Chengyu, W., Dianhao, H. & Zhongxun, G. 1990. REE geochemistry in the weathered crust of granites, Longnan area, Jiangxi Province. Acta Geologica Sinica ‐ English Edition 3(2): 193-209.

Chi, R., Tian, J., Li, Z., Peng, C., Wu, Y., Li, S., Wang, C. & Zhou, Z. 2005. Existing state and partitioning of rare earth on weathered ores. Journal of Rare Earths 23(6): 756-759.

Colman, S.M. 1982. Chemical weathering of basalts and andesites: Evidence from weathering rinds. US Geological Survey Professional Paper 1246.

Duddy, L.R. 1980. Redistribution and fractionation of rare-earth and other elements in a weathering profile. Chemical Geology 30(4): 363-381.

Fandrich, R., Gu, Y., Burrows, D. & Moeller, K. 2007. Modern SEM-based mineral liberation analysis. International Journal of Mineral Processing 84(1-4): 310-320.

Fedo, C.M., Nesbitt, H.W. & Young, G.M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23(10): 921-924.

Gu, Y. 2003. Automated scanning electron microscope based mineral liberation analysis: An introduction to JKMRC/FEI mineral liberation analyser. Journal of Minerals and Materials Characterization and Engineering 2(1): 33-41.

Haile, N.S. 1974. Borneo. In Mesozoic-Cenozoic Orogenic Belts: Data for Orogenic Studies, edited by Spenser, A.M. Geological Society of London, Special Publications 4: 333-347.

Hamilton, W. 1979. Tectonics of the Indonesian Region. U.S Geological Survey Professional Paper, 1078.

Henderson, P. 1984. Rare earth element geochemistry. In Developments in Geochemistry, Vol. 2, edited by Henderson, P. Elsevier Science Publishers B.V.

Hoshino, M., Sanematsu, K. & Watanabe, Y. 2016. REE mineralogy and resources. Handbook on the Physics and Chemistry of Rare Earths. 1st Ed. Vol. 49. Elsevier B.V.

Hutchison, C.S. 2005. Geology of the North-West Borneo: Sarawak, Brunei and Sabah. Elsevier.

Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B. & IUGS Subcommission on the Systematics of Igneous Rocks. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27(3): 745-750.

Liechti, P. 1960. The Geology of Sarawak, Brunei and the west part of North Borneo. Bull.3. Geological Survey Department, British Territories of Borneo.

Metcalfe, I. 2011. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research 19(1): 3-21.

Middelburg, J.J., van der Weijden, C.H. & Woittiez, J.R.W. 1988. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chemical Geology 68(3-4): 253-273.

Moldoveanu, G.A. & Papangelakis, V.G. 2012. Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy 117-118: 71-78.

Nesbitt, H. 1979. Mobility and fractionation of REE during wearhering of a granodiorite. Nature 279: 206-210.

Nesbitt, H.W. & Young, G.M. 1982. Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299: 715-717.

Papoulis, D., Tsolis-Katagas, P. & Katagas, C. 2004. Progressive stages in the formation of kaolin minerals of different morphologies in the weathering of plagioclase. Clays and Clay Minerals 52(3): 275-286.

Pimm, A.C. 1965. Serian Area, West Sarawak, Malaysia. Report 3, Geological Survey of Malaysia, Borneo Region. p. 92.

Rudnick, R.L. & Gao, S. 2003. Composition of the continental crusts. In Treatise on Geochemistry, edited by Holland, H.D. & Turekian, K.K. Elsevier-Pergamon. pp. 1-64.

Sanematsu, K. & Kon, Y. 2013. Geochemical characteristics determined by multiple extraction from ion-adsorption type REE ores in Dingnan County of Jiangxi Province, South China. Bulletin of the Geological Survey of Japan 64(11/12): 313-330.

Sanematsu, K. & Watanabe, Y. 2016. Characteristics and genesis of ion adsorption-type rare earth element deposits. Reviews in Economic Geology 18: 55-79.

Sanematsu, K., Kon, Y. & Imai, A. 2015. Influence of phosphate on mobility and adsorption of REEs during weathering of granites in Thailand. Journal of Asian Earth Sciences 111: 14-30.

Sanematsu, K., Kon, Y., Imai, A., Watanabe, K. & Watanabe, Y. 2013. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand. Mineralium Deposita 48(4): 437-451.

Sanematsu, K., Moriyama, T., Sotouky, L. & Watanabe, Y. 2011. Mobility of rare earth elements in basalt-derived laterite at the Bolaven Plateau, Southern Laos. Resource Geology 61(2): 140-158.

Sanematsu, K., Murakami, H., Watanabe, Y., Duangsurigna, S. & Siphandone, V. 2009. Enrichment of rare earth elements (REE) in granitic rocks and their weathered crusts in central and southern Laos. Bulletin of the Geological Survey of Japan 60(11-12): 527-558.

Sun, S.S. & McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society Special Publication 42(1): 313-345.

Tan, D.N.K. 1986. Palaeogeographic development of west Sarawak. Geol. Soc. Malaysia Bull. 19: 39-49.

Tan, D.N. & Lamy, J.M. 1990. Tectonic evolution of the NW Sabah continental margin since the Late Eocene. Bulletin of the Geological Society of Malaysia 27: 241-260.

Taniou, L., Basori, M.B.I. & Sanematsu, K. 2022. Geochemistry of rare earth elements (REE) in the weathered crusts of volcanic rocks in the Serian area, Sarawak, Malaysia. GEOSEA XVII & NGC 2022.

Taniou, L., Juni, H.M., Gendang, R.A., Rahman, A.H.A. & Thomas, H.M.N. 2019. Kajian Tinjauan Unsur Nadir Bumi, Skandium Torium di kawasan Riih, Serian Sarawak. Report No. JMG. SWK (MST) 1/2019, Jabatan Mineral dan Geosains Malaysia.

Verplanck, P.L. 2017. The role of fluids in the formation of rare earth element deposits. Procedia Earth and Planetary Science 17(39): 758-761.

Wilford, G.E. 1965. Penrissen Area, West Sarawak, Malaysia. Report 2. Malaysian Geological Survey, Borneo Region.

Yaraghi, A., Ariffin, K.S. & Baharun, N. 2020. Comparison of characteristics and geochemical behaviors of REEs in two weathered granitic profiles generated from metamictized bedrocks in Western Peninsular Malaysia. Journal of Asian Earth Sciences 199: 104385.

Yusoff, Z.M., Ngwenya, B.T. & Parsons, I. 2013. Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chemical Geology 349-350: 71-86.

 

*Pengarang untuk surat-menyurat; email: ledyhernando.t@jmg.gov.my

 

 

 

 

 

 

 

           

sebelumnya